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Ferrofluid convection has applications e.g. in high-power capacity transformer systems, where 
the ferrofluid is used as core material as well as a coolant in the transformer. To activate 
convective cooling, one has to know the critical concentration gradient, where convection sets in. 
The first study on the convective instability of a magnetic fluid heated from below in the 
presence of a uniform vertical magnetic field was realized by Finlayson [1]. Actually, he 
discussed the linear stability problem for both cases, shear free and rigid horizontal boundaries. 
Recently, using nonequilibrium thermodynamics, a complete set of equations to describe 
ferrofluid convection in an external magnetic field has been derived [2]. This description is made 
in terms of a binary mixture, where the magnetophoretic effect, as well as magnetic stresses, 
have been taken into account in the static and dynamic parts of the ferrofluid equations. 
Moreover, studies on the stationary convection in Oldroyd viscoelastic carrier liquids were 
performed [3].  
In the present work, Rayleigh-Benard convection in a magnetic viscoelastic liquid is studied. The 
stability thresholds for both, the stationary and the oscillatory convection, have been determined. 
We systematically investigate the role of the various effects (and their mutual interplay) for the 
instability and bifurcation behavior. In particular, for oscillatory instabilities nonlinear magnetic 
and nonlinear viscoelastic properties are taken into account. Two different boundaries conditions 
for the velocity field were analyzed, the so-called fee-free and rigid-rigid ones. In addition, we 
have provided analytical formula for the oscillatory convection. For weakly viscoelastic fluids 
the critical Rayleigh number for the oscillatory convection is much higher than that for the 
stationary one, while for high Deborah numbers the oscillatory instability always precedes the 
stationary instability. We have also calculated the range of parameters where the codimension-2 
bifurcation appears. In the case of rigid-rigid boundary conditions, the convection thresholds are 
calculated numerically by the spectral method. The technique of collocation points (Gauss-
Lobato) as described in [4] was used.  
Due to the presence of various destabilizing effects, i.e. buoyancy and magnetic forces, and of 
additional relaxation channels due to the Oldroyd model, the discussion of the stability curves 
becomes rather intricate. An oscillatory instability, whose critical frequency is a rapidly varying 
function of the Deborah number, is competing with the stationary one. As a result, the 
codimension-2 bifurcation line, separating those two instabilities, strongly depends on the 
structure of the Oldroyd model and its relaxation times. 
The oscillatory instability is only possible for a Deborah numbers above a certain lower limit; in 
addition, the relaxation time of the stress, has to be larger than the retardation time (of the strain 
rate). For large Deborah numbers the critical values show a distinctive asymptotic behavior. In 
particular, the critical wavevector tends to the value of the stationary case. The oscillatory 
threshold reaches a constant value that is smaller than the stationary 
one and is proportional to the ratio of the two Oldroyd time scales. Finally, the critical frequency 
goes to zero with one over square root of the Deborah number.  
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